Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: NA1078). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Blitzer, B. L., Tatoosh, S. L., Donovan, C. B. \& Boyer, J. L. (1982). Am. J. Physiol. 243, G48-G53.
Campanelli, A. R., Candeloro, S., Giglio, E. \& Scaramuzza, L. (1987). J. Lipid Res. 28, 483-489.

Enraf-Nonius (1986). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Macdonald, A. L., Morrison, P. \& Murray, A. (1991). Acta Cryst. C47, 728-730.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Petzinger, E., Muller, N., Follmann, W., Deutscher, J. \& Kinne, R. K. H. (1989). Am. J. Physiol. 193, G78-G86.

Acta Cryst. (1995). C51, 398-401

Trimethylammonium Tin Sulfide

Kemin Tan, Younghee Ko and John B. Parise
Department of Earth and Space Sciences, State University of New York, Stony Brook, New York 11794-2100, USA
(Received 17 March 1994; accepted 12 September 1994)

Abstract

The structure of trimethylammonium tin sulfidewater (1/0.72), $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}\right]_{2}\left[\mathrm{Sn}_{3} \mathrm{~S}_{7}\right] .0 .72 \mathrm{H}_{2} \mathrm{O}$, consists of sheets with 24 -membered ring openings containing alternating Sn and S atoms. Organic molecules resulting from the breakdown of the starting tetramethylammonium template reside between these sheets, which are stacked parallel to (001).

\section*{Comment}

Crystalline microporous metal sulfides form a novel family of open framework materials (Bedard, Wilson, Vail, Bennett \& Flanigen, 1989; Bedard, Vail, Wilson \& Flanigen, 1989, 1990). The structural details of some of the antimony (Dittmar \& Schäfer, 1978; Eisenmann \& Schäfer, 1979; Sheldrick \& Häusler, 1988; Parise, 1990, 1991; Parise \& Ko, 1992; Tan, Ko \& Parise, 1994), tin (Sheldrick, 1988; Ko, Cahill \& Parise, 1994; Parise, Ko, Rijssenbeek, Nellis, Tan \& Koch, 1994) and

germanium sulfides (Bedard, Wilson, Vail, Bennett \& Flanigen, 1989) have been reported. Recently, Parise, Ko, Rijssenbeek, Nellis, Tan \& Koch (1994) solved the structure of tetramethylammonium tin sulfide (TMA-SnS-1) (Bedard, Vail, Wilson \& Flanigen, 1989). This substance was synthesized hydrothermally from slurries of SnS_{2}, tetramethylammonium hydroxide (TMA-OH), elemental S and $\mathrm{H}_{2} \mathrm{O}$. It has a framework similar to that described by Sheldrick \& Braunbeck (1990) for the alkali metal selenide analogue $\mathrm{CS}_{2} \mathrm{Sn}_{3} \mathrm{Se}_{7}$. Here, we report a closely related compound obtained after prolonged heating of the same organic template (TMAOH) but with different Sn and S reactants. The new structure is designated TMA-SnS-1a.

The primary building unit for TMA-SnS-1a is a $\left[\mathrm{SnS}_{5}\right]^{6-}$ trigonal bipyramid, which is common in both open and dense tin sulfide frameworks (Krebs, 1983). The secondary building unit (Fig. 1a) is an $\mathrm{Sn}_{3} \mathrm{~S}_{4}$ semicube formed by three edge-sharing $\left[\mathrm{SnS}_{5}\right]^{6-}$ trigonal bipyramids. Six semi-cubes, oriented alternately up and down, define a 24 -membered ring as shown in Fig. $1(b)$. The rings, approximately $8.3 \AA$ in radius, bridge through semi-cubes forming $\mathrm{Sn}_{3} \mathrm{~S}_{7}$ sheets similar to that found in TMA-SnS-1. The structure (Fig. 2) consists of sheets stacked parallel to (001).

Bond-valence sums (Brown \& Wu, 1976) were consistent with oxidation states of +4 and -2 for Sn and S, respectively. Therefore, the $\mathrm{Sn}_{3} \mathrm{~S}_{7}$ sheet is negatively charged with charge compensation being achieved by protonation of either the framework or the extraframework organic species residing between the sheets.

(a)

(b)

Fig. 1. ORTEP (Johnson, 1965) drawing of (a) an $\mathrm{Sn}_{3} \mathrm{~S}_{4}$ semi-cube, the secondary building unit, and (b) a 24 -membered ring consisting of alternating Sn and S atoms. O atoms from water molecules are shown inside the opening. Probability ellipsoids are drawn at 74%.

Fig. 2. Stereo ORTEP (Johnson, 1965) drawing of the structure of trimethylammonium tin sulfide. The origin of the unit cell is in the back bottom left-hand corner, with the a axis horizontal and the b axis vertical. Probability ellipsoids are drawn at 64%.

Two kinds of organic species resulting from the breakdown of the starting template TMA were found. One possesses a trigonal pyramidal geometry and is either trimethylammonium, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$, or trimethylamine, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$. This N atom points towards the cavity of the $\mathrm{Sn}_{3} \mathrm{~S}_{4}$ semi-cube with distances to the three nearest S atoms ranging from 3.87 (3) to 4.04 (3) \AA. The second species is disordered with fractional site occupancies which were refined while isotropic displacement parameters ($B_{\text {iso }}$) were constrained. The sums of the site occupation factors of the N and C atoms are 0.9 (1) and 3.1 (1), respectively.

The pathways of the decomposition of TMA in the cavities of some molecular sieves (e.g. Y-type faujasite, offretite and SAPO-37) have been studied (Wu, Kuhl, Whyte \& Venuto, 1971; Wu, Whyte \& Venuto, 1971; Briend, Lamy, Peltre, Man \& Barthomeuf, 1993). The major products of the decomposition of the tetraalkylammonium group at low temperatures ($423-548 \mathrm{~K}$) were trimethylamines and protons. The latter were assumed to form hydroxyl groups on the framework. In the synthesis of TMA-SnS-1a, the tetramethylammonium group might decompose in a similar fashion. H atoms were not located in this study. Based on previous work (Parise, 1991; Parise \& Ko, 1992; Ko, Cahill \& Parise, 1994; Tan, Ko \& Parise, 1994; Parise, Ko, Rijssenbeek, Nellis, Tan \& Koch, 1994), we assume the protons required for charge compensation are bound to trimethylamine. Therefore, the ordered molecule is assumed to be trimethylammonium. The disordered one, which has a pyramidal shape and two orientations, is assumed to be another trimethylammonium ion, oriented either upward or downward in different cells. However, we cannot exclude the possibility of hydrosulfuryl groups and other protonated species.

Three isolated peaks, one at a special position [4(e)] and the others symmetry related, were located within each 24 -membered ring opening (Fig. 1b). They were assigned to water molecules since this compound was synthesized hydrothermally. The geometric relationships $\mathrm{O}(1) \cdots \mathrm{O}(2)=2.69(2) \AA$ and $\mathrm{O}(2) \cdots \mathrm{O}(1) \cdots \mathrm{O}(2)=$ $120(1)^{\circ}$ are suggestive of an oxonium $\mathrm{H}_{7} \mathrm{O}_{3}^{+}$cation, which has been characterized in other crystalline hydrates (Mootz \& Fayos, 1970; Lundgren, 1972; Lundgren \& Lundin, 1972). In this structure, the oxonium cation might be bound to the framework through O $\mathrm{H} \cdots \mathrm{S}$ bonding (Mereiter, Preisinger \& Zellner, 1984), as suggested by the distances of 3.36 (2) and 3.53 (2) \AA between atom $O(2)$ and its two nearest S atoms.

Experimental

The title compound crystallized hydrothermally from amorphous SnS_{2}, tetramethylammonium hydroxide (TMA-OH), elemental sulfur and $\mathrm{H}_{2} \mathrm{O}$, which were mixed in a molar ratio of 3:2:2:30 and stirred to form a brownish slurry. The elemental sulfur was dissolved completely in 40% TMA-OH solution
prior to mixing with the other components. The slurry was heated at 423 K for one week under autogenous hydrothermal conditions in a Pyrex-lined bomb. The yield was 85% (based on SnS_{2}).

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right)_{2}\left[\mathrm{Sn}_{3} \mathrm{~S}_{7}\right] \cdot 0.72 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=713.70$
Monoclinic
C2/c
$a=22.965$ (3) \AA
$b=13.196$ (3) \AA
$c=15.823$ (3) \AA
$\beta=108.28(1)^{\circ}$
$V=4553.1(15) \AA^{3}$
$Z=8$
$D_{x}=2.082 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Picker diffractometer $\omega / 2 \theta$ scans
Absorption correction: analytical
$T_{\min }=0.607, T_{\max }=$ 0.778

5321 measured reflections
4281 independent reflections
4111 observed reflections
$[I>3 \sigma(I)]$

Refinement

Refinement on F
$R=0.058$
$w R=0.041$
$S=1.54$
4108 reflections
166 parameters
H atoms were not located
$w=1 /\left[\sigma^{2}(I)+0.0009 I^{2}\right]^{1 / 2}$
$(\Delta / \sigma)_{\text {max }}=0.02$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 12 reflections
$\theta=12-14^{\circ}$
$\mu=3.89 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Pinacoids
$0.14 \times 0.04 \times 0.04 \mathrm{~mm}$
Transparent
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-30 \rightarrow 30$
$k=0 \rightarrow 17$
$l=0 \rightarrow 20$
1 standard reflection monitored every 20 reflections
intensity decay: 25\%
$\Delta \rho_{\text {max }}=0.65 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.06 \mathrm{e}_{\mathrm{max}} \AA^{-3}$
Extinction correction: isotropic secondary
Extinction coefficient: $0.54(1) \times 10^{-4}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {iso }}$ for $\mathrm{O}(1)$ to $\mathrm{C}(7) ; B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$ for others.					
	Occupancy	x	${ }^{\prime} \mathrm{y}$	z	$B_{\text {eq }} / B_{\text {iso }}$
$\mathrm{Sn}(1)$	1.00	0.29415 (2)	0.69483 (4)	0.26085 (5)	3.5 (1)
$\mathrm{Sn}(2)$	1.00	0.28688 (2)	0.96773 (4)	0.25925 (5)	3.5 (1)
$\mathrm{Sn}(3)$	1.00	0.42598 (2)	0.84104 (4)	0.26001 (4)	3.4 (1)
S(1)	1.00	0.3135 (1)	0.8339 (1)	0.1553 (2)	3.5 (1)
S(2)	1.00	0.2472 (1)	0.8272 (2)	0.3248 (2)	4.6 (1)
S(3)	1.00	0.4650 (1)	0.8460 (2)	0.1365 (2)	4.3 (1)
S(4)	1.00	0.3971 (1)	0.9920 (2)	0.3256 (2)	5.1 (1)
S(5)	1.00	0.2385 (1)	0.5935 (2)	0.1374 (2)	4.7 (1)
S(6)	1.00	0.2248 (1)	1.0620 (2)	0.1345 (2)	4.4 (1)
S(7)	1.00	0.4047 (1)	0.6851 (2)	0.3277 (2)	4.6 (1)
$\mathrm{N}(1)$	1.00	0.3888 (6)	1.1529 (10)	0.0364 (12)	12.7 (8)
C(1)	1.00	0.4553 (6)	1.1417 (12)	0.0530 (11)	9.8 (6)
C (2)	1.00	0.3558 (6)	1.0626 (11)	0.0449 (10)	8.2 (6)
C(3)	1.00	0.3626 (8)	1.2510 (12)	0.0456 (12)	12.2 (8)
$\mathrm{O}(1)$	0.23 (2)	1/2	0.3510 (26)	1/4	13.6 (17)
$\mathrm{O}(2)$	0.49 (2)	0.3959 (8)	0.4532 (16)	0.2357 (16)	11.9 (10)
$\mathrm{N}(2)$	0.63 (4)	0.3742 (15)	0.6249 (24)	-0.0411 (21)	14.2 (9)
N(3)	0.27 (3)	0.406 (3)	0.651 (5)	0.023 (4)	12.4 (18)
$\mathrm{C}(4)$	0.98 (2)	0.3400 (9)	0.6663 (15)	-0.0002 (13)	11.9 (6)

C(5)	$0.76(3)$	$0.3827(12)$	$0.7098(22)$	$-0.0902(18)$	$13.7(8)$
$\mathrm{C}(6)$	$0.79(4)$	$0.4384(12)$	$0.5689(20)$	$-0.0058(18)$	$13.8(8)$
$\mathrm{C}(7)$	$0.61(3)$	$0.3737(16)$	$0.5810(28)$	$0.0609(23)$	$13.7(11)$

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Sn}(1)-\mathrm{S}(1)$	2.612 (2)	$\mathrm{Sn}(2)-\mathrm{S}(6)$	2.390 (3)
$\mathrm{Sn}(1)-\mathrm{S}(2)$	2.435 (2)	$\mathrm{Sn}(3)-\mathrm{S}(1)$	2.596 (2)
$\mathrm{Sn}(1)-\mathrm{S}(5)$	2.381 (3)	$\mathrm{Sn}(3)-\mathrm{S}\left(3^{\text {iii }}\right)$	2.527 (2)
$\mathrm{Sn}(1)-\mathrm{S}\left(6^{\mathbf{1}}\right)$	2.542 (2)	$\mathrm{Sn}(3)-\mathrm{S}(3)$	2.392 (2)
$\mathrm{Sn}(1)-\mathrm{S}(7)$	2.427 (2)	$\mathrm{Sn}(3)-\mathrm{S}(4)$	2.432 (2)
$\mathrm{Sn}(2)-\mathrm{S}(1)$	2.613 (2)	$\mathrm{Sn}(3)-\mathrm{S}(7)$	2.439 (2)
$\mathrm{Sn}(2)-\mathrm{S}(2)$	2.437 (2)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.474 (16)
$\mathrm{Sn}(2)-\mathrm{S}(4)$	2.438 (2)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.441 (16)
$\mathrm{Sn}(2)-\mathrm{S}\left(5^{i i}\right)$	2.523 (2)	$\mathrm{N}(1)-\mathrm{C}(3)$	1.452 (17)
$\mathrm{N}(1) \cdot \cdots \mathrm{S}\left(2^{\text {iv }}\right.$)	3.87 (3)	$\mathrm{O}(1) \cdots \mathrm{O}(2)$	2.69 (2)
$\mathrm{N}(1) \cdots \mathrm{S}\left(4^{\text {v/ }}\right)$	3.89 (3)	$\mathrm{O}(2) \cdots \mathrm{S}\left(2^{1}\right)$	3.53 (2)
$\mathrm{N}(1) \cdots \mathrm{S}\left(7^{\text {lV }}\right.$)	4.04 (3)	$\mathrm{O}(2) \cdots \mathrm{S}(7)$	3.36 (2)
$\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{S}(2)$	87.04 (7)	$\mathrm{Sn}(1)-\mathrm{S}(1)-\mathrm{Sn}(3)$	87.27 (7)
$\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{S}(5)$	91.45 (8)	$\mathrm{Sn}(2)-\mathrm{S}(1)-\mathrm{Sn}(3)$	87.50 (7)
$\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{S}\left(6^{\mathbf{i}}\right)$	179.0 (1)	$\mathrm{Sn}(1)-\mathrm{S}(2)-\mathrm{Sn}(2)$	95.44 (8)
$\mathrm{S}\left(6^{\mathbf{1}}\right)-\mathrm{Sn}(1)-\mathrm{S}(7)$	92.83 (8)	$\mathrm{Sn}(3)-\mathrm{S}(3)-\mathrm{Sn}\left(3^{\text {iii }}\right)$	91.1 (1)
$\mathrm{S}(1)-\mathrm{Sn}(2)-\mathrm{S}(2)$	86.95 (7)	$\mathrm{Sn}(2)-\mathrm{S}(4)-\mathrm{Sn}(3)$	95.39 (8)
$\mathrm{S}(1)-\mathrm{Sn}(2)-\mathrm{S}(4)$	86.75 (7)	$\mathrm{Sn}(1)-\mathrm{S}(5)-\mathrm{Sn}\left(2^{1}\right)$	90.7 (1)
$\mathrm{S}(1)-\mathrm{Sn}(2)-\mathrm{S}\left(5^{\text {ii }}\right)$	178.6 (2)	$\mathrm{Sn}\left(1^{1 i}\right)-\mathrm{S}(6)-\mathrm{Sn}(2)$	90.0 (1)
$\mathrm{S}(1)-\mathrm{Sn}(2)-\mathrm{S}(6)$	91.63 (8)	$\mathrm{Sn}(1)-\mathrm{S}(7)-\mathrm{Sn}(3)$	95.20 (8)
$\mathrm{S}(2)-\mathrm{Sn}(2)-\mathrm{S}(4)$	113.1 (1)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	117 (1)
$\mathrm{S}(2)-\mathrm{Sn}(2)-\mathrm{S}\left(5^{\text {ii }}\right)$	91.79 (9)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	121 (1)
$\mathrm{S}(2)-\mathrm{Sn}(2)-\mathrm{S}(6)$	122.8 (1)	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	119 (1)
$\mathrm{S}(4)-\mathrm{Sn}(2)-\mathrm{S}\left(5^{i i}\right)$	93.11 (9)	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)$	99 (3)
$\mathrm{S}(4)-\mathrm{Sn}(2)-\mathrm{S}(6)$	123.9 (1)	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(6)$	132 (3)
$S\left(5^{\prime \prime}\right)-S n(2)-S(6)$	89.64 (8)	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(6)$	132 (3)
$S(1)-\mathrm{Sn}(3)-\mathrm{S}(3)$	91.84 (8)	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(7)$	59 (2)
$\boldsymbol{S}(1)-\mathrm{Sn}(3)-\mathrm{S}\left(3^{\text {(11) }}\right)$	179.1 (3)	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(6)$	107 (3)
$\mathrm{S}(1)-\mathrm{Sn}(3)-\mathrm{S}(4)$	87.27 (7)	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(7)$	146 (3)
$\mathrm{S}(1)-\mathrm{Sn}(3)-\mathrm{S}(7)$	87.31 (7)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(7)$	78 (2)
$S(3)-S n(3)-S\left(3^{\text {1it }}\right.$)	88.83 (9)	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(5)$	75 (3)
$\mathrm{S}\left(3^{\text {iii }}\right)-\mathrm{Sn}(3)-\mathrm{S}(4)$	92.84 (8)	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(6)$	128 (5)
$\mathrm{S}(3)-\mathrm{Sn}(3)-\mathrm{S}(4)$	123.2 (1)	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(7)$	64 (3)
$\mathbf{S}(3)-\mathrm{Sn}(3)-\mathrm{S}(7)$	124.1 (1)	$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{C}(6)$	92 (4)
$\mathbf{S}\left(3^{\text {iI }}\right)-\mathrm{Sn}(3)-S(7)$	91.84 (8)	$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{C}(7)$	130 (5)
$S(4)-\operatorname{Sn}(3)-S(7)$	112.6 (1)	$\mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(7)$	92 (4)
$\mathrm{Sn}(1)-\mathrm{S}(1)-\mathrm{Sn}(2)$	87.24 (7)		

Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $1-x, y, \frac{1}{2}-z$; (iv) $x, 2-y, z-\frac{1}{2}$.

A linear isotropic decay correction was applied with $I_{f}=$ $I_{o}\left(1-0.000805 t^{-1}\right)$

Data collection, cell refinement, absorption corrections and data reduction: local implementation of software written by L. W. Finger, Geophysical Laboratory, Carnegie Institute of Washington, Washington, DC. Program used for structure resolution and refinement, molecular graphics and preparation of materials for publication: a package of programs written and maintained by J. C. Calabrese, E. I. DuPont. Other program used for molecular graphics: ORTEP (Johnson, 1965).

This work was supported by the National Science Foundation through grant DMR 9024249.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: AB1180). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2 HU , England.

References

Bedard, R. L., Vail, L. D., Wilson, S. T. \& Flanigen, E. M. (1989). US Patent 4880761.

Bedard, R. L., Vail, L. D., Wilson, S. T. \& Flanigen, E. M. (1990). US Patent 4933068.
Bedard, R. L., Wilson, S. T., Vail, L. D., Bennett, J. M. \& Flanigen, E. M. (1989). In Zeolites: Facts, Figures, Future. Proc. 8th Int. Zeolite Conf. Amsterdam: Elsevier.
Briend, M., Lamy, A., Peltre, M. J., Man, P. P. \& Barthomeuf, D. (1993). Zeolites, 13, 201-211.

Brown, I. D. \& Wu, K. K. (1976). Acta Cryst. B32, 1957-1959.
Dittmar, V. G. \& Schäfer, H. (1978). Z. Anorg. Allg. Chem. 441, 93-97, 98-102.
Eisenmann, B. \& Schäfer, H. (1979). Z. Naturforsch. Teil B, 34, 383385.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Ko, Y., Cahill, C. \& Parise, J. B. (1994). J. Chem. Soc. Chem. Commun. pp. 69-70.
Krebs, B. (1983). Angew. Chem. Int. Ed. Engl. 22, 113-134.
Lundgren, J. O. (1972). Acta Cryst. B28, 475-481.
Lundgren, J. L. \& Lundin, P. (1972). Acta Cryst. B28, 486-491.
Mereiter, K., Preisinger, A. \& Zellner, A. (1984). J. Chem. Soc. Dalton Trans. pp. 1275-1277.
Mootz, D. \& Fayos, J. (1970). Acta Cryst. B26, 2046-2054.
Parise, J. B. (1990). J. Chem. Soc. Chem. Commun. pp. 1553-1554.
Parise, J. B. (1991). Science, 251, 293-294.
Parise, J. B. \& Ko, Y. (1992). Chem. Mater. 4, 1446-1450.
Parise, J. B., Ko, Y., Rijssenbeek, J., Nellis, D. M., Tan, K. \& Koch, S. (1994). J. Chem. Soc. Chem. Commun. p. 527.

Sheldrick, W. S. (1988). Z. Anorg. Allg. Chem. 562, 23-30.
Sheldrick, W. S. \& Braunbeck, H.-G. (1990). Z. Naturforsch. Teil B, 45, 1643-1646.
Sheldrick, W. S. \& Häusler, H.-J. (1988). Z. Anorg. Allg. Chem. 557, 105-111.
Tan, K., Ko, Y. \& Parise, J. B. (1994). Acta Cryst. C50, 1439-1442.
Wu, E. L., Kuhl, G. H., Whyte, T. E. Jr \& Venuto, P. (1971). Molecular Sieve Zeolites. Adv. Chem. Ser, 101, pp. 490-501. Washington, DC: American Chemical Society.
Wu, E. L., Whyte, T. E. Jr \& Venuto. P. (1971). J. Catal. 21, 384-393.

Acta Cryst. (1995). C51, 401-403

8-($\mathbf{P h}_{2} \mathbf{P C H}_{2} \mathbf{C H}_{2} \mathbf{P P h}_{2}$)-8,7-nidoRhSB $\mathbf{9}_{\mathbf{1 0}} \mathbf{0} \mathbf{2} \mathbf{C H}_{2} \mathbf{C l}_{\mathbf{2}}$

Kerry J. Adams, Thomas D. McGrath
and Alan J. Welch*
Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, Scotland

(Received 1 May 1994; accepted 30 August 1994)

Abstract

The synthesis and the solid-state structure determination by a low-temperature single-crystal X-ray diffraction study of $8-[1,2$-bis(diphenylphosphinoethane) $]-9,10-\mu-$ hydrido-8-rhoda-7-thia-nido-undecaborane(10), $\left[\mathrm{Rh}\left(\mathrm{B}_{9}-\right.\right.$ $\left.\left.\mathrm{H}_{10} \mathrm{~S}\right)\left(\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{P}_{2}\right)\right] .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, as the bis(dichloromethane)

^[* Address correspondence to: Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, Scotland.]

solvate are reported. In terms of conventional electroncounting rules, this species has an anomalous polyhedral geometry; two one-electron agostic type $\mathrm{Rh}-\mathrm{H}-\mathrm{C}$ interactions are proposed as the source of an additional skeletal electron pair which satisfies cluster-bonding requirements.

Comment

We are, at present, investigating examples of unusual structural behaviour in metallaheteroboranes. As part of this programme we have become interested in the anomalous geometries observed in 11-vertex rhodathiaboranes (Ferguson et al., 1990; Murphy, Spalding, Ferguson \& Gallagher, 1992) which display a nido cage architecture while apparently possessing a cluster electron count more appropriate to a closo geometry (Wade, 1976; Mingos, 1984). Herein we present the synthesis and structural characterization of a further example of such species, namely $8-\left(\mathrm{Ph}_{2} \mathrm{P}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{PPh}_{2}\right)-9,10-$ $\mu-\mathrm{H}-8,7$-nido- $\mathrm{RhSB}_{9} \mathrm{H}_{9}$, (I), and discuss a possible solution to this problem.

(I)

The title rhodathiaborane crystallizes with no crystallographically imposed symmetry and no close intermolecular contacts. Two molecules of dichloromethane co-crystallize with this species. This high proportion of solvate causes the crystal lattice to be very unstable with respect to solvent loss: crystal growth by solvent diffusion has to be arrested to avoid diffusion of dichloromethane out of the lattice; crystal transfer was therefore performed at 195 K (dry-ice bath) and data were collected at 210 K .
A perspective view of a single molecule, with the atomic numbering scheme adopted, is shown in Fig. 1.

As with previous examples of species of this type, the 11 -vertex RhSB_{9} polyhedron shows gross nidoicosahedral geometry. The $\operatorname{Rh}(8)-\mathrm{S}(7)$ distance in the present compound is 2.366 (2) \AA, shorter than in the $8,8-\left(\mathrm{PPh}_{3}\right)_{2}$ - (Ferguson et al., 1990) (A) and 8,8 -($\left.\mathrm{PPh}_{3}\right)_{2}-9-(\mathrm{OEt})$ - (Murphy, Spalding, Ferguson \& Gallagher, 1992) (B) analogues, where the correspond-

